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1
MIDDLEBOX RELIABILITY

BACKGROUND

Datacenters deploy a variety of intermediary devices or
middleboxes, such as load balancers, firewalls, intrusion
detection and prevention systems (IDPS), and virtual private
networks (VPNs). These devices provide broad range func-
tionalities to secure, manage, and improve the performance of
hosted services as well as support new traffic classes and
applications. Even in enterprise networks, the number of
middleboxes is becoming comparable to the number of rout-
ers. The middleboxes constitute a significant fraction of the
network capital costs and operational expenses, e.g., human
experts to manage them.

SUMMARY

The patent relates to middlebox reliability One example
can apply event filters to a dataset of middlebox error reports
to separate redundant middlebox error reports from a remain-
der of the middlebox error reports of the dataset. The example
can categorize the remainder of the middlebox error reports of
the dataset by middlebox device type. The example can also
generate a graphical user interface that conveys past reliabil-
ity and predicted future reliability for an individual model of
an individual middlebox device type.

The above listed example is intended to provide a quick
reference to aid the reader and is not intended to define the
scope of the concepts described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate implementations of
the concepts conveyed in the present patent. Features of the
illustrated implementations can be more readily understood
by reference to the following description taken in conjunction
with the accompanying drawings. Like reference numbers in
the various drawings are used wherever feasible to indicate
like elements. Further, the left-most numeral of each refer-
ence number conveys the figure and associated discussion
where the reference number is first introduced.

FIG. 1 shows an example system in which the present
middlebox reliability concepts can be employed in accor-
dance with some implementations.

FIG. 2 shows an example computer or computing device
that can be configured to accomplish middlebox reliability
concepts in accordance with some implementations of the
present concepts.

FIGS. 3-5 show screenshots of graphical user interfaces
that can be generated relative to middlebox reliability con-
cepts in accordance with some implementations of the
present concepts.

FIGS. 6-7 are flowcharts for accomplishing middlebox
reliability concepts in accordance with some implementa-
tions of the present concepts.

DETAILED DESCRIPTION

Overview

This discussion relates to understanding middlebox reli-
ability. The information from the present techniques can
relate to reliability of different types of middleboxes, such as
failures (e.g., failure events) caused by load balancers com-
pared to failures caused by firewalls. Further, this information
can relate to models of devices within a specific type of
middlebox. For instance, the techniques can provide the rela-
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tive failure rate of a “model a” load balancer versus a “model
b” load balancer. Further still, these techniques can predict a
useful lifespan of a particular model, such that replacement
plans can be considered in advance as well as cost vs. benefit
decision-making for spare inventory management. As used
herein, the term reliability can be defined as the probability
that an item will perform its intended function without failure
for a specified interval under stated conditions. Failure can be
defined as the inability of an item to function within its speci-
fied limits of performance.

Some of the present techniques can leverage datacenter
middlebox error reports (hereinafter, “error reports™). Error
reports relate to failure events. These error reports tend to
include high percentages of spurious and/or duplicate error
reports that obscure any understanding of the actual middle-
box reliability. The present techniques can filter the error
reports to identify the more germane or valuable error reports
(e.g., those error reports which contain useful information).
These filtered error reports can be correlated with other
middlebox-related data to specific types of devices and/or to
models of an individual device. The correlated error reports
can be used to evaluate and/or predict middlebox reliability in
various ways; some of which are described below.

System Architecture Example

FIG. 1 illustrates an example of a datacenter network archi-
tecture or system 100. The system 100 can be manifest in a
datacenter 102 that is connected to a network, such as the
Internet 104. In this case, the system 100 includes devices or
components such as intrusion detection and prevention sys-
tems (IDPS) 106, core routers 108, virtual private networks
(VPNs) 110, access routers 112, firewalls 114, load balancers
116, aggregation switches 118, Top-of-Rack (ToR) switches
120, and racks 122 of servers 124. For discussion purposes
IDPS 106, VPNs 110, firewalls 114, and load balancers 116
can be termed as middleboxes 126. The middleboxes can be
organized into a hierarchy that offers redundancy, such as is
illustrated in the example of FIG. 1.

A monitoring system 128 can monitor reliability of the
datacenter network architecture 100 as a whole and/or of
individual components. An event analysis component 130
can utilize information obtained by the monitoring system to
provide useful reliability information relating to datacenter
network architecture and/or the individual components.

From alogical standpoint, the system 100 can be organized
into a hierarchy that includes a core layer 132, an [.3 aggre-
gation layer 134, and a [.2 aggregation layer 136. This logical
organization can be based on the functional separation of
Layer-2 (trunking, VLANs, etc.) and Layer-3 (routing)
responsibilities.

ToR switches 120 (also known as host switches), connect
the servers 124 to a remainder of the system 100 via a network
represented by connecting lines in FIG. 1. Host ports in these
ToR switches are often 10/100/1000 Ethernet, with the
uplinks being Gigabit Ethernet or 10 GE ports. The ToRs can
be connected upstream to a pair of aggregation switches 118
that form a redundancy group (e.g., the group contains mul-
tiple members and individual members can perform the
switching function in the event that the other member fails).
These aggregation switches can serve as an aggregation point
for Layer-2 traffic and typically support high-speed technolo-
gies such as 10 Gigabit Ethernet to carry large amounts of
traffic (e.g., data).

Traffic from aggregation switches 118 can be forwarded to
the access routers 112 which can be deployed in pairs for
redundancy. Access routers 112 can use Virtual Routing and
Forwarding (VRF) to create a virtual, Layer-3 environment
for each tenant. (A tenant is a service or application hosted on
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servers which uses network devices for connectivity—route
traffic from/to users or other services to/from its hosted serv-
ers.) The access routers 112 can aggregate traffic from up to
several thousand servers 124 and route the traffic to core
routers 108 that can connect to the rest of the system 100 and
Internet 104.

Loadbalancers 116 can improve the performance of hosted
applications. Redundant pairs of load balancers 116 can con-
nect to each aggregation switch 118 and perform mapping
between static [P addresses (exposed to clients through DNS)
and dynamic IP addresses of the servers 124 that process user
requests. L.oad balancers can support different functionalities
such as NAT, SSL acceleration, cookie management, and data
caching.

Firewalls 114 can protect applications from unwanted traf-
fic (e.g., DoS attacks) by examining packet fields at IP-,
transport- and sometimes even at the application layer against
a set of defined rules. While software-based firewalls can be
attractive to quickly implement new features, hardware-
based firewalls are typically used in datacenters to provide
performance-critical features.

VPNs 110 can augment datacenter network infrastructure
by providing switching, optimization and security for web
and client/server applications. The VPNs can provide secure
remote access via SSL VPN.

There can be other middleboxes 126, such as NATs, WAN
optimizers, proxies and media converters, among others. A
media converter device can perform on-the-fly conversion of
application level data, transcoding of existing web pages for
display on hand-held wireless devices, and transcoding
between various audio formats for interconnecting mobile
phones with VoIP services.

The monitoring system 128 can accept event log streams
from syslog, for example, and perform functions such as
reformatting, filtering data based on rules and routing mes-
sages to any installed rule engines or archival log files. These
logs can contain information about what type of network
component experienced an event, the event type, the other
end-point of this component, and a short machine generated
description of the event.

Network operators may troubleshoot network faults
through problem tracking systems or “ticketing” systems that
coordinate among network engineers working on the prob-
lem. Some troubleshooting systems are built around the NOC
RFC. In such a case, a unique identifier herein referred to as
NOC TicketlID is assigned to each failure event. These tickets
contain structured information about when and how an event
was discovered and diaries of steps taken by the engineers in
troubleshooting and mitigating the problem.

Operators can use a maintenance tracking and revision
control system to track activities such as device provisioning,
configuration changes, and/or software upgrades throughout
the system 100. The maintenance tracking and revision con-
trol system can be features of the monitoring system 128 or a
separate system. Before debugging an outage, a network
engineer can check the maintenance tracking system for on-
going and planned maintenance. The network engineer can
use the revision control system to detect any recent changes to
the device configuration files. Network traffic carried on net-
work interfaces (links) can be logged using SNMP polling
that averages traffic seen every five minutes, for example.
Other sources of traffic information can be obtained from
sampling based approaches such as sFlow. Traffic monitoring
systems can use the MIB format to store the data that includes
fields such as the interface type (token ring, Ethernetetc.), the
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other end of the interface, the interface status (up/-down),
and/or the number of bytes sent or received by the interface,
among others.

Event analysis component 130 can utilize event logs
obtained by the monitoring system 128 to evaluate system
and/or component reliability. For instance, additionally or
alternatively to the event logs obtained from the monitoring
system the event analysis component 130 can utilize data
collected by network operators. For example, network opera-
tors can detect faults from network devices and analyze root
causes by using monitoring alarms, such as syslog and SNMP
traps, and by monitoring device status via ping and SNMP
polling. The event analysis component 130 can obtain any
other middlebox related data to use in analyzing middlebox
reliability. Non-limiting examples of such data can include
traffic data, configuration data, maintenance data, prior fail-
ure history data, and/or device meta-data.

Event analysis component 130 can correlate the above
mentioned data with failure events to extract failures impact-
ing network traffic and to reverse-engineer the topology infor-
mation using link-level connectivity as the topology changes
from time-to-time. As used herein a failure can be thought of
as an event that causes a device or a link to be unavailable to
perform its intended task. Specifically, a link failure can be
thought of as occurring when the connection between two
devices is down. Similarly, a device failure can be thought of
as occurring when the device is not functioning for routing/
forwarding traffic.

Some implementations of event analysis component 130
can filter several types of spurious network event logs, such as
inaccurate event logs, duplicate event logs caused by multiple
devices reporting the same event, single events being
recorded as multiple events, and “shadow™ reports (e.g.,
chatty events). In regard to inaccurate event logs, syslog mes-
sages can be spurious with devices sending multiple notifi-
cations even though a device is operational. In regards to
multiple reporting devices, two or more devices (e.g., neigh-
bors) may send notifications for the same event leading to
redundant event logs (e.g., multiple redundant middlebox
error reports). The error reports can be thought of as redun-
dant if subsequent error reports relate to an error that was
reported by an earlier error report. Regarding a single event
being recorded as multiple events, a flapping device can gen-
erate multiple down and up messages which get logged as
different events.

Shadow events can be thought of as events being triggered
due to devices which are being scheduled for replacement or
have been detected as faulty by operators but which are await-
ing repairs. In some cases this effect can be severe with some
devices (e.g., “chatty” or “shadow” devices) sending more
than a thousand device down notifications over a few hours
because the notification system did not suppress them during
the troubleshooting window. Techniques that the event analy-
sis component 130 can employ to filter several types of spu-
rious network event logs are described below relative to FI1G.
6.

To summarize, the event analysis component 130 can char-
acterize the reliability across different types of middleboxes
and across different series of devices of a given type, or those
belonging to the same service or application, or by data cen-
ter, or any other logical or physical grouping, by applying
event filters to de-noise monitored datasets.

The event analysis component 130 can also correlate the
filtered data across multiple dimensions and perform infer-
ence analysis. In some cases, the correlation can be per-
formed solely on the filtered event logs. For instance, such
correlation can identify a pattern of failures from the filtered
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event logs. One such example can compare a number of
failure events per device of a given device type to identify
individual devices with a high failure rate. Another example
can compare downtimes per failure event among different
devices of a device type.

In other cases, the correlation can be performed on the
filtered event logs and other middlebox-related data from
other sources. As mentioned above examples of such other
middlebox-related data can include traffic data, configuration
data, maintenance data, prior failure history data, and/or
device meta-data. Correlating the filtered event logs with
other middlebox related data from other sources can enhance
the value of the data for reliability determination. The latter
case can provide highly reliable data upon which to perform
the inference analysis.

Event Analysis Component Example

FIG. 2 shows event analysis component 130 embodied on
a computer 200. In this case, computer 200 is manifest as a
desktop computer. The term “computer” or “computing
device” are used interchangeably, and as used herein can
mean any type of device that has some amount of processing
capability. While specific examples of computers are illus-
trated for purposes of explanation, other examples of such
computers can include traditional computing devices, such as
personal computers, any of the devices introduced relative to
FIG. 1, cell phones, smart phones, personal digital assistants,
or any of a myriad of ever-evolving or yet to be developed
types of devices. Further, a system can be manifeston a single
computing device or distributed over multiple computing
devices.

In this case, computer 200 can include an application layer
202, an operating system layer 204, and a hardware layer 206.
The event analysis component 130 can be manifest as a pro-
gram or application of the application layer 202, among other
configurations. In this example, the event analysis component
130 can include a middlebox error report filter module (here-
inafter, “filter module™) 208, a middlebox error report corre-
lation module (hereinafter, “correlation module™) 210, and a
middlebox recommendation module (hereinafter, “recom-
mendation module”) 212.

The hardware layer 206 can include a processor 214 stor-
age/memory (e.g., computer-readable storage media(me-
dium)) 216, a display device 218, and/or various other ele-
ments. For instance, the other elements can include input/
output devices, optical disc readers, USB ports, etc.

Processor 214 can execute data in the form of computer-
readable instructions to provide a functionality, such as an
event analysis component functionality. Data, such as com-
puter-readable instructions, can be stored on storage/memory
216 and/or received from another source, such as optical
storage device 220. The storage/memory 216 can include any
one or more of volatile or non-volatile memory, hard drives,
flash storage devices (e.g., memory sticks or memory cards),
and/or optical storage devices (e.g., CDs, DVDs, etc.), among
others. As used herein, the term data can include computer-
readable instructions (e.g., program code) and/or data that is
received by a program (e.g., user input). The computer may
also receive data in the form of computer-readable instruc-
tions over network 221 that is then stored on the computer
(and/or on a storage device that is communicatively coupled
with the computer) for execution by its processor. For
example, the network 221 can connect computer 200 to moni-
toring system 128 and/or a database 222.

Alternatively to the illustrated configuration of computer
200, the computer can employ a system on a chip (SOC) type
design. In such a case, functionality provided by the computer
can be integrated on a single SOC or multiple coupled SOCs.
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For instance, the computer can include shared resources and
dedicated resources. An interface(s) can facilitate communi-
cation between the shared resources and the dedicated
resources. As the name implies, dedicated resources can be
thought of as including individual portions that are dedicated
to achieving specific functionalities. Shared resources can be
storage, processing units, etc. that can be used by multiple
functionalities.

Generally, any of the functions described herein can be
implemented using software, firmware, hardware (e.g., fixed-
logic circuitry), manual processing, or a combination of these
implementations. The term “engine”, “tool”, “component”,
or “module” as used herein generally represent software,
firmware, hardware, whole devices or networks, or a combi-
nation thereof. In the case of a software implementation, for
instance, these may represent program code that performs
specified tasks when executed on a processor (e.g., CPU or
CPUs). The program code can be stored in one or more
computer-readable storage/memory devices, such as com-
puter-readable storage media. The features and techniques of
the component are platform-independent, meaning that they
may be implemented on a variety of commercial computing
platforms having a variety of processing configurations.

As used herein, the term “computer-readable media” and
“computer-readable medium” can include transitory and non-
transitory instructions. In contrast, the terms “computer-read-
able storage media” and “computer-readable storage
medium” and “computer-readable storage medium” exclude
transitory instances and/or signals. Computer-readable stor-
age media can include “computer-readable storage devices”.
Examples of computer-readable storage devices include vola-
tile storage media, such as RAM, and non-volatile storage
media, such as hard drives, optical discs, and flash memory,
among others.

In some implementations, the filter module 208 can be
configured to perform functionality relating to separating
duplicate error reports from a remainder of the error reports in
the dataset. The correlation module 210 can be configured to
perform functionality relating to correlating individual error
reports, such as by time of occurrence, date of occurrence,
duration of occurrence, physical location, type, property, con-
figuration setup, and/or functional role of involved middle-
boxes. The recommendation module 212 can be configured to
perform functionality relating to predicting future reliability
of individual middlebox device models. The recommenda-
tion module can also be configured to perform functionality
relating to recommending a replacement date for individual
middlebox device models.

Stated another way, the event analysis component 130 can
achieve event filtering, denoising, correlation within the fil-
tered error report data and/or across different data sources,
cost vs. benefit analysis, reliability comparison, decision
making, predicting failures, trend analysis, etc. These aspects
are described in more detail below by way of example.

In this case, the event analysis component 130 can generate
the GUI screenshot 224 by obtaining error reports from moni-
toring system 128 and/or database 222. The database 222 can
include error reports from one or more datacenters. Error
reports obtained from, or relating to one or more datacenters
can be thought of as a dataset that is evaluated by the event
analysis component 130.

The event analysis component 130 can separate individual
error reports relating to middlebox devices and links connect-
ing these devices from those of other datacenter devices. The
event analysis component 130 can also identify error reports
relating to high priority events from a remainder of the error
reports. In some implementations, the event analysis compo-
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nent 130 can employ a systematic methodology that uses
spatio-temporal panoramas of device failures and applies
trend analysis to characterize middlebox reliability in data-
centers. These aspects are described in more detail below.

FIG. 2 also shows a graphical user interface (GUI) screen-
shot 224 that can be generated by the event analysis compo-
nent 130 from the dataset. GUI screenshot 224 illustrates that
in one example datacenter, middleboxes make up a relatively
small percent of the total number of the datacenter devices.
However, these middleboxes contributed to a relatively high
percent of the high priority incidents. Thus, middlebox reli-
ability can have a disproportionately large impact on data-
center reliability. Note that the illustrated results are provided
for discussion purposes and are representative of functions
that can be performed by the present implementations. How-
ever, applying the present implementations to data from a
different datacenter can produce different results than those
illustrated and discussed relative to FIGS. 2-5.

To summarize, several features that can be offered by the
event analysis component 130 are described above and below.
These features can include characterizing middlebox reliabil-
ity from a datacenter “‘site-up” vs. “cost-down” perspective.
Another feature can involve characterizing middlebox reli-
ability by comparing middlebox device type and models
within an individual device type. A further feature can involve
filtering shadow devices which log a significant number of
failures even after their fault has been detected. Still another
feature can apply a pipeline of event filters across network
datasets to extract meaningful failures from data. A further
feature can involve evaluating the effectiveness of middlebox
redundancy when a redundancy group has more than two
components. Still another feature can involve applying spatial
panoramas and trend analysis to identify the most failure
prone network elements, such as the more or most failure
prone middlebox device types and/or models within a device
type. These features are described more below relative to
FIGS. 3-6.

FIG. 3 shows another GUI screenshot 300 that can be
generated by event analysis component 130 operating on the
dataset introduced relative to FIG. 2. This screenshot shows a
graph 302 with a horizontal axis defined by middlebox device
type and a vertical axis defined by percent. [llustrated middle-
box device types are load balancers, firewalls, VPNs, with the
remainder grouped as “others”. In this dataset example, load
balancers make up a majority of the middlebox population
and account for a majority of the middlebox failure events.
Also of note, VPNs make up a relatively small amount of the
middlebox population and account for a relatively high per-
centage of the middlebox failure events.

As mentioned above, the event analysis component 130
can balance “site-up” vs. “cost-down” considerations. “Site-
up” can relate to an availability of services provided by the
datacenter. Stated another way, what percent of the time are
the services available such as may be defined in a service-
level agreement. “Cost down” can include all costs associated
with providing the services, such as datacenter, capital costs,
software, maintenance and management costs, among others.
For example, one goal can be to increase (and potentially
maximize) service availability while keeping costs down. For
instance, keeping a large inventory of spare devices can
ensure that failed devices can be quickly replaced to minimize
downtime. However, this incurs significant costs and spares
themselves might be faulty or become obsolete over time. To
balance this tradeoff, event analysis component 130 can iden-
tify highly failure prone (and potentially the most failure
prone) middleboxes for replacement that exhibit high down-
time or a high number of failures.
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The event analysis component 130 can also indicate suffi-
cient numbers of spares to maintain as backup (e.g., recom-
mended number of spares). The event analysis component
130 can also provide information that can aid in understand-
ing the root causes of middlebox failures. This knowledge can
be useful for network troubleshooting. Further, the event
analysis component 130 can analyze the effectiveness of
middlebox redundancy in masking failures. The information
displayed in FIGS. 3-5 can be utilized by the event analysis
component 130 when balancing these considerations.

FIG. 4 shows a GUI screenshot 400 that characterizes
middlebox type reliability across brands/vendors, platforms,
models and/or series. In the illustrated example the middle-
box type is load balancers. The load balancers are organized
by series as LB-1, LB-2, LB-3, LB-4, and L.B-5. For long-
term provisioning, one goal is to understand and compare
device reliability across different vendors and device fami-
lies. In particular, a point of interest can include reliability by
brand, series, and/or model. Another point of interest can
identify which problems are common to a device brand,
series, and/or model.

The event analysis component 130 can utilize this infor-
mation to compare device reliability across load balancer
generations. Both hardware and software improvements dur-
ing a study period can also be captured by the event analysis
component 130.

The event analysis component 130 can identify failure root
causes. In the test case the main root causes of load balancer
failures due to hardware are faulty power supply units
(PSUs), cabling, ASIC, and memory problems; those due to
software are reboot loops, software version incompatibility
between active and standby devices, port flapping; mainte-
nance/configuration e.g., authentication issues, VIP realloca-
tion, RFC Implementations; and the remaining are unknown
problems. For firewalls, the root causes were mainly mis-
configurations, software bugs, and network card failures.
VPN failures were attributed to errors in VLAN reallocation
and SNAT port exhaustion. Of course, beyond the illustrated
example, the event analysis component 130 can show root
cause type and its contribution to number of failures and
downtime of a middlebox device type in any manner that
provides useful information.

The event analysis component 130 can determine the effec-
tiveness of middlebox redundancy. For instance, the event
analysis component can identify the redundancy between
load balancers and aggregation switches in reducing the
impact of failure on network traffic (measured in terms of lost
bytes) and the percent of the events which experience zero
impact. For example, in one instance, two potentially key root
causes of this ineffectiveness could be software version
inconsistencies between primary and backup devices and
configuration bugs in the failover mechanism.

The event analysis component 130 can identify individual
middlebox devices that cause inordinately high amounts of
failures. For instance, a few devices contributed to a signifi-
cant number of failures in one device family. Further, a new
load balancer generation exhibited a higher relative failure
rate than its previous generation. In this case, the event analy-
sis component 130 determined that one possible cause of the
higher failure rate was due to software bugs. The event analy-
sis component 130 also identified a family of load balancers
having faulty power supply units (PSUs) which could have
been detected as early problem indicators by aggregating
failure root causes across that type. Without the event analysis
component 130 the faulty PSUs were repaired in isolation
without recognition of the scope of the problem. The event
analysis component 130 can identify faulty devices exhibit-
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ing unexpected reboots which led to the defective device
being sent back to the vendor. The event analysis component
130 can then determine whether the applied fix was effective
or whether another eventually solved the problem.

The event analysis component 130 can identify early prob-
lem symptoms to enable proactive repair and maintenance of
a model of a middlebox device type. Further, as evidenced,
the event analysis component 130 can identify whether a new
product line is more reliable than its predecessor. This analy-
sis can further be used to compute a cost of ownership metric.
The event analysis component 130 can utilize this informa-
tion to determine whether it is cost-effective to continue with
a faulty product line by purchasing additional spares or to
replace it (the product line) at a point in time (see description
related to FIG. 5). Finally, this information can be useful
feedback to manufacturers/vendors in fixing existing prob-
lems and adding new features in future generations.

The following discussion offers further details regarding
load balancer reliability. Failing load balancers whose links
were not carrying any traffic before the failure can be sepa-
rated into two categories: (i) inactive (no traffic before or
during the failure) and (ii) provisioning (no traffic before the
failure but some traffic during the failure). When links are idle
and functioning, the links tend to exchange small amounts of
control traffic, such as 30 bytes/sec. Therefore, accurate link
filtering can utilize 30 bytes/sec as a threshold. Thus, those
load balancers above 30 bytes/sec are considered to be car-
rying traffic.

The event analysis component 130 can create a panorama
of how load balancer failures are distributed across a mea-
surement period ordered by datacenters and applications to
which they belong. The panorama can represent failure over
unit time, such as per day. In one configuration the panorama
can represent widespread failures as vertical bands and long-
lived failures can be represented as horizontal bands. Thus,
event analysis component 130 can recognize vertical bands as
failures that are spatially distributed across multiple devices
around the same time. Notable reasons for this can include
planned software upgrades/RFCs. In such a case the device
software is being upgraded to a newer version or all devices
across multiple datacenters are being upgraded.

The event analysis component 130 can also recognize
unplanned inconsistencies. For instance, occasionally, after a
device replacement, there is a software mismatch between the
new device and the old standby. For example, if any control
protocols undergo a change as a result of a software upgrade
without a proper backward compatibility (upgrade as
opposed to update), then any bootstrapping could subse-
quently fail. In this scenario, all devices involved in the group
tend to be taken down for a software upgrade.

The event analysis component 130 can also recognize
effect propagation where failure of devices higher up in the
topology trigger alerts connected devices in the underlying
sub-tree. For instance, when an access router fails, it tends to
trigger alerts in all firewall devices connected to it.

The event analysis component 130 can also recognize
long-lived failures as horizontal bands in the panorama.
These horizontal bands can indicate device failures on the
same device across time. The event analysis component 130
can detect these as early warnings of impending failures. This
scenario can be common when a device is about to fail. For
instance, one suspected device may have SDRAM ECC
errors and try to recover (thus triggering multiple failure
events) but keep being power cycled as a quick-fix.

The event analysis component 130 can also recognize
standby/failover error. For example, this can occur when a
standby device is not notified of its peer being replaced after
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a failover. For instance, if the standby device is not aware that
the active device is being replaced then the standby device
will tend to log multiple down events indicating that the active
device is down when in fact, the active device is physically
absent.

The event analysis component 130 can also recognize faux
devices. For example, an individual middlebox device might
be monitored while the middlebox device is not connected to
the operational network. In this scenario, if the middlebox
device is switched over to active, it tends to log multiple
events indicating that its links are down.

Annualized Device Failure Rate

The event analysis component 130 can compare the reli-
ability of load balancers across device generations/vendors
(e.g., across manufacturers, models, etc.) using the probabil-
ity of failure metric, among other techniques. In one imple-
mentation, this metric is computed by dividing the number of
middlebox devices of a given type that observe failure by the
total population of that type.

FIG. 4 shows a GUI screenshot 400 that illustrates the
annualized failure rate for different load balancer genera-
tions. In the illustrated example, five of the most prevalent
models of load balancers (LB-1, . . . , LB-5) are arranged by
the decreasing size of their population from left to right onthe
screenshot GUI.

Intheillustrated upper graph 402, the failure rate of the five
load balancer models tends to vary significantly. In terms of
overall failure probability, load balancers (LB-1, LB-3 and
LB-5) are the least reliable with about a one-third chance of
experiencing a failure. The failure rate increased from an
older generation LB-1 to a newer LB-3 indicating potential
defects in the newer generation. Lower graph 404 shows the
fraction of failures and downtime contributed by each model.
Observe that LB-1 exhibits a large failure rate as well as
contributing significantly to the total number of failures and
downtime. However, note that in one comparison to other
load balancers, the fraction of failures contributed can be
higher than the downtime indicating that most problems are
short-term failures. Or conversely, the event analysis compo-
nent 130 can identify when a particular model is experiencing
more long term failures than other models. The event analysis
component 130 can validate this observation by using time-
to-repair plots where a short time to repair indicates transient
problems. In this instance, a majority of these problems were
due to link flapping. The event analysis component 130 can
also determine the percentage of downtime and failure per
device for each model.

Time to Repair

In some implementations, the time to repair for a middle-
box device can be defined as the time between a down noti-
fication for a device and when it is next reported as being back
online. There are two types of failures: short-lived transient
failures where the network engineer may not always inter-
vene to resolve the failure and long-term failures where the
middlebox device or its component is usually replaced or
decommissioned. Note that for long-term failures, the failure
durations may be skewed by when the network troubleshoot-
ing tickets were closed by network operators. For instance,
support tickets usually stay open until the middlebox device
in question is replaced with a spare and this duration can be in
the order of days.

The event analysis component 130 can also calculate the
time to repair for load balancers. Short-lived failures may be
attributed to software problems (e.g., OS watchdog timer
triggering a reboot). Comparing across load balancers, the
time to repair for the generations increased for LB-3 indicat-
ing potential problems with troubleshooting these devices.
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However, for newer generation devices of LB-2, the time to
repair is relatively lower indicating that newer generations get
fixed quickly.

The event analysis component 130 can calculate annual-
ized downtime for middleboxes. The availability of a device
can be estimated using the annualized downtime metric, i.e.,
the degree to which a device or network component is opera-
tional and accessible when required for use during the period
of observation.

Time to failure of a device can be defined as the time
elapsed between two consecutive failures. Since this metric
requires that a device fail at least twice, devices having only
zero or one failures during a measurement period can be
excluded. In the analyzed dataset, load balancers tend to
experience a number of short-lived transient failures, i.e.,
irrespective of their device generation, a majority of them fail
within a relatively short amount of time, such as one or two
days. However, specific percentages of failures, such as the
95th percentile may be weeks or months between failures.
This indicates that even among devices that fail multiple
times, there tends to be two types of devices: robust ones that
failed once in one or two months and failure prone devices
that experience numerous failures (mostly within 24 hours).
The event analysis component 130 can identify notable
causes of these failures, examples of which are now
described. One notable cause of frequent failures can be
referred to as link flapping (Sync Problems). Link flapping
relates to unexpected cases where standby-devices are unable
to sync with active devices and hence raise alerts indicating
link failures. Another frequent cause of failures is neighbor
maintenance. Neighbor maintenance refers to devices that are
power recycled/updated as part of routine maintenance so
when a device goes down, its neighbors start sending DOWN
notifications. Reboot loops are another frequent cause of fail-
ures. Devices get stuck in a reboot loop where the devices are
either hard-power recycled or sent back for replacement. A
further frequent cause of failures is field test failures. Field
test failures result when network engineers routinely perform
EUD (End-User Diagnostics) tests to ensure that the device
health is at acceptable levels. During this procedure, devices
are restarted or tested multiple times.

The next discussion point relates to failure trends across
different middlebox device types. The event analysis compo-
nent 130 can create timeline trends for the number of failure
events and the number of devices that failed. In one imple-
mentation, subplots can show two curves—a cumulative
curve that sums up the number of failures across time and
another curve to show the actual number of failures. In some
cases the two curves are similar for both the devices and
failure events. Such an occurrence can indicate that the num-
ber of devices that fail is on par with the number of failures.

In other instances the number of failure events is far higher
than the number of devices that failed indicating that a few
bad devices are responsible for a majority of failures. Further,
a sudden increase in the slope can indicate major problems
during that period of observation.

The event analysis component 130 can further identify the
major root causes observed for each load balancer type. In the
explored dataset unexpected reboots are a common root cause
across all device types due to software bugs or faulty hard-
ware components. For reboots due to software problems, the
main reasons were fault in the switch card control processor,
licensing bugs, and incorrect value setting for the OS watch-
dog timer. Hardware-related reboots were caused due to
cache parity errors, power disruption, hard disk failures,
faulty EEPROM or dual in-line memory modules, and/or
failed network cards. Overall, across both planned and unex-
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pected outages, hardware problems contributed relatively
fewer problems e.g., faulty PSUs, cabling problems, ASIC
and memory problems; software contributed relatively more
problems e.g., reboot loops, active/standby version incom-
patibility, and port flapping; maintenance/configuration con-
tributed relatively few problems e.g., authentication issues,
VIP reallocation, RFC Implementations; and the remaining
problems were attributed as unknown root causes.

The event analysis component 130 can estimate the Impact
of failures. In some cases, quantifying the impact of a failure
is difficult as it can require attributing discrete “outage” levels
to annotations used by network operators such as severe,
mild, or some impact. To circumvent this problem, the event
analysis component 130 can correlate the network event logs
with link-level traffic measurements to estimate impact of a
failure event. However, it can be difficult to precisely quantify
how much data was actually lost during a failure because of
two complications: (i) presence of alternate routes in data-
centers, and (ii) temporal variations in traffic patterns. In one
implementation, the event analysis component can estimate
the failure impact in terms of lost network traffic that would
have been routed on a failed link in the absence of the failure.
Specifically, the event analysis component can first compute
the median number of bytes on the links connected to a failed
device in the hours preceding the failure, median before, and
the median bytes during the failure. Then the event analysis
component can estimate the amount of data that was poten-
tially lost during the failure event as: loss=(medianbefore—
medianduring)xfailure duration (1) where duration denotes
how long the failure lasted.

The event analysis component 130 can evaluate the effec-
tiveness of network redundancy in mitigating failure impact
as it is a de-facto technique for fault tolerance in datacenters.
Within a redundant group, one device is usually designated
the primary and the rest as backups. However, note that some
devices may belong to multiple redundancy groups.

The event analysis component 130 can observe large
redundancy groups of up to 12 load balancers connected to a
single aggregation switch using link-level connectivity. The
event analysis component 130 can estimate the effectiveness
of redundancy by computing the ratio of median traffic
(bytes) entering a device across all links during a failure and
the median traffic entering the device before the failure. The
event analysis component can then compute this ratio across
all devices in the redundancy group where the failure
occurred. Network redundancy is considered 100% effective
if this ratio is close to one across a redundancy group. This
ratio can be thought of as normalized traffic.

The event analysis component 130 can create a graph to
show the distribution of normalized traffic for individual
devices and redundancy groups. Several reasons can contrib-
ute to why redundancy is not 100% effective in masking the
failure impact. A first reason can relate to faulty failovers. In
some cases the primary device failed when the backup was
experiencing an unrelated problem and hence led to a failed
failover. In other cases, software/protocol bugs prevented the
failover from happening correctly often sending devices into
a deadlock state. Software mismatch can be another source of
faulty failover. In such cases, the OS version on the backup
device may be different from the primary device leading to
differences in the failover protocol. In these cases, the net-
work engineer can perform a break/fix maintenance to bring
both devices to the same software version. A further source is
mis-configurations or cases where the same configuration
error was made on both primary and backup devices.
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Other Middleboxes

The event analysis component 130 can analyze the reliabil-
ity across different types of firewalls and VPN devices which
show a higher degree of robustness compared to load balanc-
ers. The event analysis component can use the metrics intro-
duced relative to load balancers to compare device reliability
across different generations of a model and vendors.

For instance, for a given dataset, firewall related failures
may tend to occur relatively infrequently or more frequently
compared to load balancers.

To gain insight into the kind of failures affecting middle-
boxes (notably, load balancers due to their large footprint),
the event analysis component 130 can analyze the network
tickets associated with each individual series to develop a
more thorough understanding of the problems facing data-
centers. The results can be studied with network operators.
Early Problem Symptoms

As noted above, the event analysis component 130 can
identify problems grouped by a device type. In some imple-
mentations, the event analysis component can use the
grouped problems to determine early failure indicators of
problems with the entire set of devices in that type. In one
such example, although the operations team had been proac-
tively repairing faulty power supply units (PSUs) associated
with load balancers, most repairs/replacements were per-
formed in isolation. The analysis from the event analysis
component 130 revealed load balancers of type LB-1 to have
a relatively high annualized failure rate. Analyzing network
tickets associated with this series indicated that (i) devices
were failing due to PSU problems even before the repairs
started, (i1) out of all network tickets related to LB-1, a sig-
nificant portion of them required that the device be replaced.
This is somewhat surprising: while most devices have
extended warranty, a device replacement risks operating at
reduced or no redundancy until the replacement arrives, while
keeping a large number of spares incurs significant costs.

In most cases where a device was sent back to the manu-
facturer for a post-mortem, their analysis did not prove to
yield any useful results. This is likely due to the fact that most
problems are believed to be isolated and unless needed,
troubleshooting does not involve conducting specialized tests
that uncover problem patterns. In comparison, the present
approach of aggregating root causes across a device genera-
tion helped identify problem patterns. In this case, failing
PSUs could have been used as early indicators of problems
with the product line. A cost of ownership analysis can then be
useful to decide whether to continue using a device model or
gracefully upgrade it to newer models.

Another issue that was examined in further detail involved
LB-3 load balancers where problematic devices were reboo-
ting unexpectedly. The ticket diaries indicated that (i) the
manufacturer was not able to find the root cause and (ii) in a
large percentage of the problematic cases, the defective unit
was sent back to the manufacturer for a replacement. The
subsequent product-line upgrades from the manufacturer’s
website revealed this to be a software bug related to a watch-
dog timeout. This timeout got triggered in response to a high
volume of network traffic on the management network. In this
case, the newer generation [.B-3 exhibited lower reliability
than its predecessor L.B-1. Ideally this bug should have been
fixed with a software patch but instead it led to wastage of
several weeks of troubleshooting man hours. One way to
address this issue with third-party middlebox vendors is to
perform rigorous functional verification prior to deployment.

Another issue that was examined in further detail related to
the L.B-1 series. The event analysis component 130’s trend
analysis and reliability and downtime estimates revealed that
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LB-1 suffered from the few bad apples effect i.e., the rate of
increase of the slope of the cumulative count of failures curve
is higher than the rate of increase of the slope of the cumula-
tive count of devices curve. This indicates that only a few
devices are contributing to a majority of failures and can be
confirmed by high COV value for LB-1.

Trend analysis is a useful tool in uncovering these types of
problems where a specific set of devices are more failure-
prone than the rest of the population. There are many reasons
why this happens. For instance, a fault with the regulated PSU
will frequently cause power fluctuations leading to damaged
parts. Even if the damaged parts are replaced, unless the fault
is localized to the power supply unit, for example, the prob-
lem will repeat itself.

Another issue that was examined in further detail related to
failover bugs due to version mismatches. This particular case
study concerns LB-1 and LB-3 where devices were sent back
to the manufacturer for replacement. A significant percentage
of the events led to another simultaneous failure event being
generated—the failover mechanism had failed. Subsequent
troubleshooting revealed the root cause as an outdated soft-
ware version on the standby device leading to failure of the
new failover mechanism. Of course, this example is intended
to represent occurrences in the test data and may not reoccur
in other datacenter scenarios.

The event analysis component 130 can consider network
redundancy at both the device level and the failover mecha-
nisms. Techniques such as regular failover testing and check-
ing for consistency of network configurations can be used to
check the robustness of the failover mechanisms.

This robustness checking can provide additional informa-
tion that can be useful for datacenter management decision,
such as replace vs. upgrade control strategies. For instance,
one of the examples described above involved a newer device
generation which had lower reliability compared to its pre-
decessor. More broadly, it raises a key question about decid-
ing whether to keep replacing faulty devices in existing
deployments or to upgrade to a new product line. Answering
this fundamental question can involve a deeper understanding
of multiple challenges. For instance, upgrading devices with
their high-speed, feature-rich counterparts will likely require
additional training for network engineers. Thus, the degree of
familiarization with the upgraded device can be considered in
making the decision to upgrade or not. For example, an unde-
sirable consequence of this issue is a longer time to repair for
devices, at least initially, due to unfamiliarity.

A further factor in the upgrading equation can be active/
standby compatibility. For example, incorporating new ver-
sions of devices into an existing network may lead to unex-
pected problems e.g., the compatibility problems between
primary devices and the standby devices as observed in the
case studies. By computing a metric such as the cost of
ownership (COO), decisions such as whether to purchase
additional spares for a faulty product line or to gracefully
replace a product line can be made. The primary cost elements
of'the COO model can be: (1) initial investment in purchasing
the product, (ii) depreciation, (iii) cost of operation that
includes space, personnel, and/or power expenses, (iv) cost of
maintenance operations including downtime, repair cost, fail-
ure rates, and/or cost of spares, and/or (v) enhancement costs
that include hardware/software upgrades and/or personnel
training. Reliability analysis provided by event analysis com-
ponent 130 can attempt to answer some of these questions.

FIG. 5 offers a GUI screenshot 500 that can be generated to
convey the reliability analysis. The GUI screenshot shows a
graph 502 of downtime in hours (vertical axis) per month
(horizontal axis). This particular graph relates to load bal-
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ancer .B-1, but the concepts are applicable to other middle-
boxes. The graph 502 is separated into two sections: past
reliability is indicated at 504 and predicted future reliability is
indicated at 506. Further, graph 502 includes a recommended
replacement point or date 508. The event analysis component
130 can generate graph 502 and recommended replacement
point (e.g., replacement date) 508 utilizing the techniques
described above and below. Replacement date information
provided by the event analysis component can relate to how
many devices to phase out, when, from which roles, what new
devices to maintain on-board as their replacement, how to
shift the traffic, etc.

The event analysis component 130 can also provide guid-
ance regarding spare device management (e.g., what middle-
box devices to keep on-site as replacements and how many).
With existing ad-hoc spare management it is common for
network engineers to not have replacement devices on-site.
Delays in obtaining additional inventory can cause decreased
system reliability. The event analysis component 130 can
leverage several aspects of the above mentioned analysis to
determine on-site inventory. Examples of two aspects that can
be leveraged include (i) metrics such as annualized failure
rates, time to failure and time to repair can be used to build
device reliability models, and (ii) root cause analysis can be
used to identify early problem symptoms in failing devices
and to compute a requisite number of replacement parts as
spares. This reliability information can be combined to bal-
ance cost vs. benefit tradeoffs of extended downtime of a
device (e.g., situated at a network hotspot) because of delay in
obtaining a spare against the holding costs of the inventory
and the risk that the spares may become obsolete or fail
themselves before being used.

The event analysis component 130 can also implement
failover stress testing. This can reduce (and potentially avoid)
instances where the primary and the backup device failed
simultaneously due to mis-configuration of the backup
device, cabling errors, and mismatch between software ver-
sions of the primary and backup.

The event analysis component 130 can provide useful
information and/or services to organizations that own or man-
age datacenters as well as to vendors that design/manufacture
middlebox devices. In regards to vendors, the event analysis
component can provide robust test suites. As noted above,
post mortem analysis of failed devices by the vendors did not
yield conclusive results in some cases. As troubleshooting
can involve significant time and personnel, it translates into
repair costs for the vendor. Having detailed knowledge of the
different type of problems observed for a particular device
type will help design robust test suites that can automatically
perform functional verification and model checking of newer
generations of devices. This will help prevent commonly
occurring hardware and software problems and meet the
expectations of “operational readiness” quantified in terms of
the probability that the equipment will be ready to start its
function when called upon to do so.

The event analysis component 130 can also provide infor-
mation regarding product-line life cycles. For instance, the
event analysis component can generate an accurate estimate
of device reliability that can aid the vendor in estimating the
cost of spare parts inventory i.e., for a highly reliable device
the vendor can produce less spare parts. This information can
be inferred from the problem tickets raised by the vendor’s
customers e.g., datacenter operators.

METHOD EXAMPLES

FIG. 6 shows a filtering method or technique 600 for sepa-
rating a sub-set of germane event tickets from less informa-
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tive event tickets from a set. This technique can utilize events
from various sources. In this case, the events are manifest as
Syslog/SNMP events 602 and events from a NOC ticket
database 604. In this implementation, obtained events that do
not have an associated NOC ticket can be removed as a first
pre-processing act at 606. This filter can be based upon the
assumption that if an event was not dealt with by an operator,
then it is likely that the event did not cause an impact.

The technique can employ a timing filter at 608. The timing
filter can be used to fix various timing inconsistencies. In one
implementation, the timing filter can first group events with
the same start and end time originating on the same interface.
This process can remove duplicate events. Next, the timing
filter can pick the earliest start and end times of multiple
events that originated within a predefined time window on the
same interface. For example, any events that happened within
a predefined time of 60 seconds on the same interface can be
grouped into a single event (e.g., characterized as a single
event). This process can reduce or avoid any problems due to
clock synchronization and log buffering.

Next, the technique can group two events originating on the
same interface that have the same start time but different end
times. These events can be grouped into a single event that is
assigned the earlier of the end times. The earliest end times
can be utilized since events may not be marked as cleared long
after their resolution. The technique can employ a planned
maintenance filter at 610. Events caused by planned mainte-
nance can have less value in understanding device behavior
than unplanned events (e.g., unexpected outages).

The technique can employ a shadow device filter at 612.
The shadow device filter can be useful to filter events being
logged by devices being scheduled for replacement or that
have been detected as faulty by operators but are awaiting
repairs. The shadow device filter can identify these shadow
devices by arranging the devices in the descending order of
their number of failures. In one implementation, for a top
percentage of the devices in this list, all events are merged that
have the same “NOC TicketID” field. This constitutes an
event in that events with the same ticket ID are likely to have
the same symptoms. In one case the top percentage is defined
as the top five percent, but of course other values can be
employed in other implementations.

The technique can employ an impact filter at 614. An event
can be defined as having an impact when the event affects
application reliability e.g., throughput loss, number of failed
connections or increased latency. In implementations without
access to application-level logs, failure impact can be esti-
mated by leveraging network traffic data 616 and computing
the ratio of the median traffic on a failed device/link during a
failure and its value in the recent past. For example, the value
of the recent past can be set as the preceding eight-hour
correlation window 618. Other implementations can use
other values. A failure has impact if this ratio is less than one.
The above acts can collectively allow the filtering technique
600 to identify the failures with impact at 620. Of course,
other filters can alternatively or additionally be utilized.

FIG. 7 shows a middlebox analysis method or technique
700. At 702, the method can obtain a set of middlebox error
reports. In one implementation, the set of middlebox error
reports can be obtained from a datacenter monitoring system
or from a database that stores the set of middlebox error
reports on behalf of the datacenter monitoring system.

At 704, the method can separate spurious and duplicate
middlebox error reports from a filtered sub-set of the middle-
box error reports. In one implementation, the separating can
be accomplished by applying a pipeline of event filters to the
set of middlebox error reports to generate the filtered sub-set
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of'the middlebox error reports. In some cases, the pipeline can
be created by selecting individual filters from a set of avail-
able event filters.

At 706, the method can correlate the filtered sub-set of the
middlebox error reports with other middlebox-related data to
produce correlated data. In one case, the correlation can iden-
tify failures that take a long time to fix. Further, groups of
failures that happen at the same time or nearly the same time
can be identified. Note that in some implementations, the
correlation of block 706 can be performed only on the set of
middlebox error reports obtained at block 702. In other imple-
mentations, the correlation can be performed on the set of
middlebox error reports obtained at block 702 and/or upon
data from other data sources. For instance, an example of
other data sources that can be drawn upon can include traffic
data, configuration data, maintenance data, prior failure his-
tory data, and/or device meta-data, among others. The corre-
lated data can be especially indicative of middlebox reliabil-
ity when compared to uncorrelated data. At 708, the method
can perform inference analysis on the correlated data to esti-
mate middlebox reliability. Some implementations can fur-
ther apply spatial panoramas and trend analysis to identify
relatively highly failure prone middlebox device types and/or
models.

The order in which the methods are described is not
intended to be construed as a limitation, and any number of
the described blocks can be combined in any order to imple-
ment the method, or an alternate method. Furthermore, the
method can be implemented in any suitable hardware, soft-
ware, firmware, or combination thereof, such that a comput-
ing device can implement the method. In one case, the method
is stored on one or more computer-readable storage media as
a set of instructions such that execution by a processor of a
computing device causes the computing device to perform the
method.

Conclusion

Although techniques, methods, devices, systems, etc., per-
taining to middlebox reliability are described in language
specific to structural features and/or methodological acts, it is
to be understood that the subject matter defined in the
appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as exemplary forms of implementing the
claimed methods, devices, systems, etc.

The invention claimed is:

1. At least one computer-readable storage medium having
instructions stored thereon that, when executed by a comput-
ing device, cause the computing device to perform acts, the
acts comprising:

obtaining a set of middlebox error reports relating to a set

of middlebox devices having multiple different middle-
box device types;
separating spurious and duplicate middlebox error reports
from a filtered sub-set of the middlebox error reports;

correlating the filtered sub-set of the middlebox error
reports with other middlebox-related data to produce
correlated data; and,

performing inference analysis on the correlated data to

estimate middlebox reliability for multiple middlebox
models within an individual middlebox device type or to
evaluate effectiveness of middlebox redundancy.

2. The computer-readable storage medium of claim 1,
wherein the middlebox reliability is estimated for the indi-
vidual middlebox device type and for the multiple middlebox
models within the individual middlebox device type.

3. The computer-readable storage medium of claim 1,
wherein the separating comprises applying a pipeline of event
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filters to the set of middlebox error reports to generate the
filtered sub-set of the middlebox error reports, and wherein
the pipeline of event filters includes an individual event filter
relating to time or another individual event filter relating to
chatty events.

4. The computer-readable storage medium of claim 1,
wherein the other middlebox-related data is obtained from
sources other than the set of middlebox error reports, and
wherein the other middlebox-related data comprises one or
more of: traffic data, configuration data, maintenance data,
prior failure history data, or device meta-data.

5. The computer-readable storage medium of claim 1,
wherein the spurious and duplicate middlebox error reports
are generated by the set of middlebox devices.

6. The computer-readable storage medium of claim 1,
wherein the correlating is performed across multiple dimen-
sions comprising: time of occurrence, duration of occurrence,
physical location, type, property, configuration setup, or
functional role of involved middleboxes.

7. The computer-readable storage medium of claim 1,
wherein the performing inference analysis on the correlated
data further comprises applying spatial panoramas or trend
analysis to identity other middlebox device types that are
relatively highly failure prone and other middlebox models
that are relatively highly failure prone.

8. The computer-readable storage medium of claim 1,
wherein the middlebox redundancy is evaluated for a redun-
dancy group of the set of middlebox devices that has at least
two individual instances of the individual middlebox device
type.

9. A computer-implemented method, comprising:

applying event filters to a dataset of middlebox error

reports to separate redundant middlebox error reports
from a remainder of the middlebox error reports of the
dataset;

categorizing the remainder of the middlebox error reports

of the dataset by middlebox device type; and,
generating a graphical user interface that conveys past

reliability and predicted future reliability for an indi-

vidual model of an individual middlebox device type.

10. The computer-implemented method of claim 9, further
comprising correlating the remainder of the middlebox error
reports with other middlebox-related data and performing the
categorizing and the generating on data produced by the
correlating.

11. The computer-implemented method of claim 9, further
comprising determining a recommended replacement date
for the individual model of the individual middlebox device
type.

12. The computer-implemented method of claim 11,
wherein the determining includes both site-up and cost-down
considerations.

13. The computer-implemented method of claim 11, fur-
ther comprising determining a recommended number of
spares to maintain for the individual model of the individual
middlebox device type.

14. A system, comprising:

an event analysis component configured to evaluate data-

center middlebox error reports that relate to multiple
types of middlebox devices and multiple models within
an individual middlebox device type, and wherein the
event analysis component is further configured to evalu-
ate the middlebox device types and models from both a
datacenter site-up perspective and a datacenter cost-
down perspective.

15. The system of claim 14, wherein the event analysis
component further comprises a middlebox error report filter
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module that is configured to create a filter pipeline from a set
of available event filters that relate to time, redundancy,
impact, and planned maintenance.

16. The system of claim 14, wherein the event analysis
component further comprises a middlebox error report cor-
relation module that is configured to correlate individual error
reports with other middlebox-related data that is not obtained
from the datacenter middlebox error reports.

17. The system of claim 14, wherein the event analysis
component further comprises a middlebox recommendation
module that is configured to predict future reliability of indi-
vidual middlebox device models.

18. The system of claim 14, wherein the event analysis
component further comprises a middlebox recommendation
module that is configured to recommend a replacement date
for individual middlebox device models.

19. The system of claim 14, wherein the system is manifest
on a single computer.

20. The system of claim 14, wherein the datacenter middle-
box error reports relate to a single datacenter and the system
comprises the single datacenter, or wherein the datacenter
middlebox error reports relate to multiple datacenters and the
system comprises the multiple datacenters, or wherein the
datacenter middlebox error reports relate to the single data-
center and the system does not include the single datacenter,
or wherein the datacenter middlebox error reports relate to
multiple datacenters and the system does not include the
multiple datacenters.

21. The system of claim 14, further comprising at least one
hardware processor configured to execute computer-readable
instructions of the event analysis component.
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